Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available August 11, 2026
- 
            Abstract Artificial intelligence and machine learning frameworks have become powerful tools for establishing computationally efficient mappings between inputs and outputs in engineering problems. These mappings have enabled optimization and analysis routines, leading to innovative designs, advanced material systems, and optimized manufacturing processes. In such modeling efforts, it is common to encounter multiple information (data) sources, each varying in specifications. Data fusion frameworks offer the capability to integrate these diverse sources into unified models, enhancing predictive accuracy and enabling knowledge transfer. However, challenges arise when these sources are heterogeneous, i.e., they do not share the same input parameter space. Such scenarios occur when domains differentiated by complexity such as fidelity, operating conditions, experimental setup, and scale, require distinct parametrizations. To address this challenge, a two-stage heterogeneous multi-source data fusion framework based on the input mapping calibration (IMC) and the latent variable Gaussian process (LVGP) is proposed. In the first stage, the IMC algorithm transforms the heterogeneous input parameter spaces into a unified reference parameter space. In the second stage, an LVGP-enabled multi-source data fusion model constructs a single-source-aware surrogate model on the unified reference space. The framework is demonstrated and analyzed through three engineering modeling case studies with distinct challenges: cantilever beams with varying design parametrizations, ellipsoidal voids with varying complexities and fidelities, and Ti6Al4V alloys with varying manufacturing modalities. The results demonstrate that the proposed framework achieves higher predictive accuracy compared to both independent single-source and source-unaware data fusion models.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            Free, publicly-accessible full text available November 17, 2025
- 
            Social media enables the rapid spread of many kinds of information, from pop culture memes to social movements. However, little is known about how information crosses linguistic boundaries. We apply causal inference techniques on the European Twitter network to quantify the structural role and communication influence of multilingual users in cross-lingual information exchange. Overall, multilinguals play an essential role; posting in multiple languages increases betweenness centrality by 13%, and having a multilingual network neighbor increases monolinguals’ odds of sharing domains and hashtags from another language 16-fold and 4-fold, respectively. We further show that multilinguals have a greater impact on diffusing information is less accessible to their monolingual compatriots, such as information from far-away countries and content about regional politics, nascent social movements, and job opportunities. By highlighting information exchange across borders, this work sheds light on a crucial component of how information and ideas spread around the world.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
